Horwich and the Liar

Sergi Oms Sardans

Logos, University of Barcelona

1

Horwich defends an epistemic account of vagueness according to which vague predicates have sharp boundaries which we are not capable of knowing. Furthermore, he wants to preserve the Law of Excluded Middle, or LEM, (which is seen as a basic law of thought) and, consequently, he claims, the Principle of Bivalence, or BIV (see, for example, Horwich (1997, 2005)). He needs, hence, a theory of vagueness capable of accommodating all these features and of explaining the phenomenology that underlies the phenomenon of vagueness; that is, according to him, our tendency to be unwilling to apply both the predicate and its negation to certain objects although being aware of the fact that no further investigation could be of any usefulness.

Horwich admits that the following claim is counterintuitive:

\(*)\) vague predicates have sharp boundaries, that is, they divide the world into two sharp groups of things: the ones that have the property expressed by the predicate and the ones that haven’t.

He claims, though, that in front of the Sorites paradox only two reasonable responses are possible: abandon classical logic, which is seen by Horwich as desperate, or accepting \(*\). He analyzes and rejects several considerations that lie behind the idea that vagueness is at odds with sharp boundaries. Let me discuss one of them related to the impossibility of finding out the line that divides the objects that have a given property expressed by a vague predicate and the objects that do not have that property.

One idea in favor of vague predicates not having sharp boundaries uses the inference to the best explanation. The fact that we are not able to find out the sharp boundaries of vague predicates can be best explained by the fact that there are no such sharp boundaries. Horwich’s response to this line of thought consists of an explanation of why we cannot know the extensions of our vague predicates. Let’s see how this account is articulated.
Horwich proposes to look at the fundamental regularities implicit in our linguistic practice that underly our use of vague predicates. His proposal is to understand this fundamental regularity as approximated by a partial function \[A(P)\] which specifies the subjective probability of its applying as a function of the underlying parameter \(n\) (i.e. ‘number of grains’ for ‘heap’, ‘number of dollars’ for ‘rich’,…). (Horwich (1997, p. 933))

Such regularities would explain all our uses of vague predicates; they would be complete in the sense that any ‘decision’ (Horwich (1997, p. 934)) about the borderline cases of a given vague predicate \(P\) would have to be a consequence of the underlying partial function \(A(P)\). Such function would have been implicitly acquired by exposure to sentences reflecting clear instances of \(P\), of not-\(P\), and of not so clear cases close enough to the clear ones. The partial function \(A(P)\) is determined, thus, by our acceptance of certain sentences containing the word for \(P\). That’s why he says:

the explanatorily fundamental acceptance property underlying our use of ‘red’ is (roughly) the disposition to apply ‘red’ to an observed surface when and only when it is clearly red. (Horwich (1998a, p. 45))

These partial functions are the fundamental facts about our use of vague predicates; they are fundamental in the sense that they must be in the basis of any explanation of any fact concerning our use of vague predicates (Horwich (2005, p. 94, 1997, p. 934)). The fact that these fundamental facts are functions that remain silent with respect to the application of the predicates to certain objects explains why we also must remain silent in front of such applications and why we are confident that acquiring new information will not solve the matter, which is, according to Horwich, the basic phenomenology underlying vagueness.

These considerations also explain why we cannot know whether borderline cases are in the extensions of vague predicates; the only way we can be justified in applying a given vague predicate to an object is via the fundamental facts underlying the vague predicate and that, as we have seen, is not possible. Hence, believing an ascription of a vague predicate to a borderline case will never be able to constitute knowledge.

Horwich can define a notion of determinateness based on his account of meaning. He uses, first, the claim that meanings are concepts and, second,
that meaning properties are constituted\(^1\) by use properties, which, in turn, stem from some given fundamental acceptance properties (Horwich (1998a, p. 44)). The idea, then, is that some ascription of a predicate \(P\) to an object \(o\) is indeterminate when it is conceptually impossible to know whether \(o\) is \(P\); that is, when the unknowability of the ascription has its roots in the facts (that is, the fundamental acceptance properties) that make our words mean what they mean.

2

Horwich’s theory of truth, called ‘Minimalism’, follows the wittgensteinian rule against over-drawing linguistic analogies; although for some predicates (‘table’, ‘dog’,...) it makes sense to inquire into the shared characteristics of the things to which they apply, for some others, like the truth predicate, it does not. If it makes sense to seek some kind of underlying nature in the case of the former kind of predicates, it is because they are used to categorize reality; we cannot presuppose, though, that this is the function of the truth predicate. According to Horwich, the main function of the truth predicate is to allow the interchangeability of a sentence and its truth ascription. This idea is captured by Horwich with the T-schema applied to propositions:\(^2\)

\[(T\text{-schema}) \quad <p> \text{ is true iff } p.\]

Since late nineties, Horwich (1998b, 2001, 2010) has presented and defended Minimalism. One of its main theses is that the instances of the T-schema are epistemologically, explanatory and conceptually fundamental. Thus, in the first place, they fix the meaning, they implicitly define the truth predicate (Horwich (1998b, p. 145)); this is because the basic and fundamental regularity of use that determines the meaning of ‘truth’ (which is the concept of truth, for meanings are concepts, according to Horwich) is our disposition to accept all instances of the T-schema, so they are conceptually fundamental. In the second place, the instances of the T-schema are all we need to explain

\(^1\)According to Horwich (1998a, p. 25) a given property \(A\) is constituted by another property \(B\) when their co-extensiveness is the basic explanation of facts involving \(A\); thus, for example, if the property of being water is constituted by the property of being composed of \(H_2O\), it is because (i) they apply to the same things and (ii) that this fact (namely, (i)) explains all facts about the property of being water.

\(^2\)The symbols ‘\(<\’ and ‘\(>\)’ surrounding a given expression \(e\) produce an expression referring to the propositional constituent expressed by \(e\). Thus, when \(e\) is a sentence, ‘\(<e>\)’ means the proposition that \(e\).
all our uses of ‘true’, so they are explanatory fundamental. And, finally, the instances of the T-schema are ‘immediately known’ (Horwich (2010, p. 36)), they cannot be deduced from anything more basic, so they are epistemologically fundamental. In other words, the T-schema plays a similar role with respect to the truth predicate than the partial functions of section 1 with respect to vague predicates.

It is natural, thus, that Horwich theory of truth, Minimalism, contains as axioms all instances of the T-schema applied to propositions, and nothing more.

Now, as it is well known, the proposition that asserts its own non-truth (let’s call it ‘the Liar’) makes the theory consisting of just all instances of the T-schema inconsistent in classical logic. Until recently, Horwich response to this problem had been very succinct. In his (1998) he claims that the lesson the Liar tells us is that not all the instances of the T-schema are to be included as axioms in the theory (Horwich (1998b, p. 42)). Thus, the minimalist theory of truth consists of a restricted collection of instances of the T-schema; only those that do not engender Liar-like paradoxes.

Horwich’s full solution to the Liar has been made explicit by Armour-Garb (2004), Beall and Armour-Garb (2005), Restall (2005) and, though succinctly, by Horwich himself in his (2010). Beall, Armour-Garb and Restall has called it ‘Semantic Epistemicism’.

The two tenets of Semantic Epistemicism, the minimalist stance in front of The Liar, are the following:

1. The Liar is true or The Liar is false.

2. It is conceptually impossible to know whether The Liar is true and it is conceptually impossible to know whether The Liar is false.

Let’s see the rationales for these two points. First, 1 is an instance of the Principle of Bivalence.

The reasons for accepting 2 are closely related to our previous discussion of vagueness. As Horwich says in the quote above, the reasons why the truth value of the Liar is indeterminate are the same as in the case of vagueness.

This is an exaggeration; properly, we will need other theories besides the truth theory to explain all facts about truth, because some of these facts will involve other phenomena. As Horwich says, Minimalism ‘provides a theory of truth that is a theory of nothing else, but which is sufficient, in combination with theories of other phenomena, to explain all the facts about truth’ (Horwich (1998b, pp. 24-25)).

That characterization is not completely accurate; as Horwich admits, the theory should also have an axiom claiming that only propositions are bearers of truth (see Horwich (1998b, fn. 7 in p.23, p.43)).
Recall that the instances of the T-schema are explanatorily fundamental in the sense, as in the case of vagueness, that they must be in the basis of any explanation of any fact concerning our use of the truth predicate and, moreover, that they fix the meaning of ‘truth’, that is, the concept of truth. Thus, since the minimalist theory of truth does not have the paradoxical instances of the T-schema as axioms, it is conceptually impossible to know any fact concerning the truth value of the paradoxical propositions.

One of the main problems of Minimalism is to give a satisfactory way of deciding when a given instance of the T-schema is to be included in the theory (see, for example McGee (1992) or Weir (1996) for the difficulties and Horwich (2010) for a tentative effort to solve this). Although it is far from clear how Horwich can eventually articulate his solution to the Liar paradox, I want to present a problem for Minimalism that arises even if we end up with an apparently fine proposal of a way to decide when a given instance of the T-schema is to be included in the theory. For take the proposition expressed by the following sentence:

\[(L) \quad A \text{ or } \neg L \text{ is not true.}\]

where \(A\) is to be substituted for any indeterminate sentence (in the Horwich’s sense, that is, a sentence whose truth value is conceptually unknowable). Notice that \(L\) is paradoxical just in case \(A\) is false. Now, take the following biconditional:

\[(B) \quad \text{An instance of the T-schema involving a proposition } p \text{ is in the minimalist theory of truth if, and only if, } p \text{ is not paradoxical.}\]

Sentences like \(L\) show that \(B\) must be false. For, suppose that the \(L\)-instance of the T-schema is in the theory, then, given \(B\), \(L\) is not paradoxical, which means that \(A\) must be true. But we just have concluded the truth value of \(A\), which, according to Horwich, is not possible at all. Suppose, now, that the \(L\)-instance of the T-schema is not in the theory. Then, given \(B\), \(L\) is paradoxical, which means that \(A\) is false. Again, we have just discovered \(A\)’s truth value, which is supposed to be impossible. So, \(B\) must be false. Certainly, Horwich does not want to deny the left to right direction of \(B\), for, then, his theory would be inconsistent. That means that the only direction of the biconditional in \(B\) which can be false is the right to left direction; thus, there are non-paradoxical propositions whose instances of the T-schema are not in the minimalist theory of truth. This shows that Horwich cannot give a maximal theory of truth, even if he offers a suitable way of deciding the members of his theory.
References

